367 research outputs found

    Combining Stream Mining and Neural Networks for Short Term Delay Prediction

    Full text link
    The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with some latency caused by periodical data transmission and temporal problems preventing data transmission. This negatively affects identification of delayed vehicles. The primary objective of the work is to propose short term hybrid delay prediction method. The method relies on adaptive selection of Hoeffding trees, being stream classification technique and multilayer perceptrons. In this way, the hybrid method proposed in this study provides anytime predictions and eliminates the need to collect extensive training data before any predictions can be made. Moreover, the use of neural networks increases the accuracy of the predictions compared with the use of Hoeffding trees only

    Methodisch unterstützter Entwurf mechanischer Mikrosysteme

    Get PDF

    Big Data Analysis

    Get PDF
    The value of big data is predicated on the ability to detect trends and patterns and more generally to make sense of the large volumes of data that is often comprised of a heterogeneous mix of format, structure, and semantics. Big data analysis is the component of the big data value chain that focuses on transforming raw acquired data into a coherent usable resource suitable for analysis. Using a range of interviews with key stakeholders in small and large companies and academia, this chapter outlines key insights, state of the art, emerging trends, future requirements, and sectorial case studies for data analysis

    Arctic Oceanography - Oceanography: Atmosphere-Ocean Exchange, Biogeochemistry & Physics

    Get PDF
    The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent

    Data Pipeline Management in Practice: Challenges and Opportunities

    Get PDF
    Data pipelines involve a complex chain of interconnected activities that starts with a data source and ends in a data sink. Data pipelines are important for data-driven organizations since a data pipeline can process data in multiple formats from distributed data sources with minimal human intervention, accelerate data life cycle activities, and enhance productivity in data-driven enterprises. However, there are challenges and opportunities in implementing data pipelines but practical industry experiences are seldom reported. The findings of this study are derived by conducting a qualitative multiple-case study and interviews with the representatives of three companies. The challenges include data quality issues, infrastructure maintenance problems, and organizational barriers. On the other hand, data pipelines are implemented to enable traceability, fault-tolerance, and reduce human errors through maximizing automation thereby producing high-quality data. Based on multiple-case study research with five use cases from three case companies, this paper identifies the key challenges and benefits associated with the implementation and use of data pipelines

    Real-Time Big Data Analytics in Smart Cities from LoRa-Based IoT Networks

    Get PDF
    The currently burst of the Internet of Things (IoT) tech-nologies implies the emergence of new lines of investigation regarding not only to hardware and protocols but also to new methods of pro-duced data analysis satisfying the IoT environment constraints: a real-time and a big data approach. The Real-time restriction is about the continuous generation of data provided by the endpoints connected to an IoT network; due to the connection and scaling capabilities of an IoT network, the amount of data to process is so high that Big data tech-niques become essential. In this article, we present a system consisting of two main modules. In one hand, the infrastructure, a complete LoRa based network designed, tested and deployment in the Pablo de Olavide University and, on the other side, the analytics, a big data streaming sys-tem that processes the inputs produced by the network to obtain useful, valid and hidden information.Ministerio de Economía y Competitividad TIN2017-88209-C2-1-

    Identification of altered miRNAs and their targets in placenta accreta

    Get PDF
    Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression

    Prediction of Antibiotic Susceptibility Profiles of Vibrio cholerae Isolates From Whole Genome Illumina and Nanopore Sequencing Data: CholerAegon

    Get PDF
    During the last decades, antimicrobial resistance (AMR) has become a global public health concern. Nowadays multi-drug resistance is commonly observed in strains of Vibrio cholerae, the etiological agent of cholera. In order to limit the spread of pathogenic drug-resistant bacteria and to maintain treatment options the analysis of clinical samples and their AMR profiles are essential. Particularly, in low-resource settings a timely analysis of AMR profiles is often impaired due to lengthy culturing procedures for antibiotic susceptibility testing or lack of laboratory capacity. In this study, we explore the applicability of whole genome sequencing for the prediction of AMR profiles of V. cholerae. We developed the pipeline CholerAegon for the in silico prediction of AMR profiles of 82 V. cholerae genomes assembled from long and short sequencing reads. By correlating the predicted profiles with results from phenotypic antibiotic susceptibility testing we show that the prediction can replace in vitro susceptibility testing for five of seven antibiotics. Because of the relatively low costs, possibility for real-time data analyses, and portability, the Oxford Nanopore Technologies MinION sequencing platform-especially in light of an upcoming less error-prone technology for the platform-appears to be well suited for pathogen genomic analyses such as the one described here. Together with CholerAegon, it can leverage pathogen genomics to improve disease surveillance and to control further spread of antimicrobial resistance.We thank Dr. Daniel Cadar and Heike Baum from the NGS core facility of the Bernhard Nocht Institute for Tropical Medicine for technical support. We thank the Carl-Zeiss-Stiftung (FKZ 0563-2.8/738/2), TWMMG DigLeben (5575/10-9), and DFG iDIV (FZT 118, 202548816) for financial support. Figures were finalized with Inkscape v1.0.2.S
    corecore